137 research outputs found

    Study of the effect of mechanical impact parameters on an impact-mode piezoelectric ceramic power generator

    Get PDF
    This paper presents an analytical and experimental study on the effect of mechanical impact parameters on impact-mode piezoelectric ceramic power generators. The parameters are the velocity and mass. The method of analysis is based on a weight drop experiment. The results show that the peak of the instantaneous output voltage is proportional to the impact velocity, and for the output power, it is in a straight line relationship with the same parameter. For the same velocity of impact, the advantage of using heavy objects is clear because its momentum and the impact force are higher. However, an adjustment in the velocity of impact is found to be more effective for higher instantaneous output power than the mass. This finding is supported by the output power that is generated by a 4-g steel ball with a momentum of 4.34 gm/s, which is almost 300% higher than that of an 8-g steel ball for the same momentum. The frequency responses of a vibration-based impact-mode piezoelectric ceramic power generator also support the same conclusion

    The Effect of the Parameters of a Vibration-Based Impact Mode Piezoelectric Power Generator

    Get PDF
    This study reports the effects of the parameters of a vibration-based impactmode piezoelectric power generator. First, an evaluation of the effects of the impact parameters, the mass, and the impact velocity is presented. It is found that the output voltage of the piezoelectric device in impactmode is directly proportional to the velocity,whereas the output power is equal to a quadratic function of the same variable. For the same impact momentum, the effect of the velocity in generating a higher peak output is dominant compared with the mass. Second, the vibration-based impact mode piezoelectric power generator is discussed. The experimental results show that a wider operating frequency bandwidth of the output power can be achieved with the preloading configuration. However, regardingmagnitude, due to the high velocity of impact, the configurationwith a gap between the tip and the piezoelectric device produces a higher output

    New Solutions to the Firing Squad Synchronization Problems for Neural and Hyperdag P Systems

    Full text link
    We propose two uniform solutions to an open question: the Firing Squad Synchronization Problem (FSSP), for hyperdag and symmetric neural P systems, with anonymous cells. Our solutions take e_c+5 and 6e_c+7 steps, respectively, where e_c is the eccentricity of the commander cell of the dag or digraph underlying these P systems. The first and fast solution is based on a novel proposal, which dynamically extends P systems with mobile channels. The second solution is substantially longer, but is solely based on classical rules and static channels. In contrast to the previous solutions, which work for tree-based P systems, our solutions synchronize to any subset of the underlying digraph; and do not require membrane polarizations or conditional rules, but require states, as typically used in hyperdag and neural P systems

    The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits

    Get PDF
    スーパー作物キヌアの多様性を解明 --高い環境適応性と優れた栄養特性をもつキヌアの品種改良に期待--. 京都大学プレスリリース. 2020-10-15.Cultivation of quinoa (Chenopodium quinoa), an annual pseudocereal crop that originated in the Andes, is spreading globally. Because quinoa is highly nutritious and resistant to multiple abiotic stresses, it is emerging as a valuable crop to provide food and nutrition security worldwide. However, molecular analyses have been hindered by the genetic heterogeneity resulting from partial outcrossing. In this study, we generated 136 inbred quinoa lines as a basis for the molecular identification and characterization of gene functions in quinoa through genotyping and phenotyping. Following genotyping-by-sequencing analysis of the inbred lines, we selected 5, 753 single-nucleotide polymorphisms (SNPs) in the quinoa genome. Based on these SNPs, we show that our quinoa inbred lines fall into three genetic sub-populations. Moreover, we measured phenotypes, such as salt tolerance and key growth traits in the inbred quinoa lines and generated a heatmap that provides a succinct overview of the genotype–phenotype relationship between inbred quinoa lines. We also demonstrate that, in contrast to northern highland lines, most lowland and southern highland lines can germinate even under high salinity conditions. These findings provide a basis for the molecular elucidation and genetic improvement of quinoa and improve our understanding of the evolutionary process underlying quinoa domestication

    Virus-Mediated Transient Expression Techniques Enable Functional Genomics Studies and Modulations of Betalain Biosynthesis and Plant Height in Quinoa

    Get PDF
    スーパー作物キヌアにおける遺伝子機能の解析技術を開発 --優れた環境適応性や栄養特性の謎を解き、作物開発を加速化--. 京都大学プレスリリース. 2021-03-19.Quinoa (Chenopodium quinoa), native to the Andean region of South America, has been recognized as a potentially important crop in terms of global food and nutrition security since it can thrive in harsh environments and has an excellent nutritional profile. Even though challenges of analyzing the complex and heterogeneous allotetraploid genome of quinoa have recently been overcome, with the whole genome-sequencing of quinoa and the creation of genotyped inbred lines, the lack of technology to analyze gene function in planta is a major limiting factor in quinoa research. Here, we demonstrate that two virus-mediated transient expression techniques, virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX), can be used in quinoa. We show that apple latent spherical virus (ALSV) can induce gene silencing of quinoa phytoene desaturase (CqPDS1) in a broad range of quinoa inbred lines derived from the northern and southern highland and lowland sub-populations. In addition, we show that ALSV can be used as a VOX vector in roots. Our data also indicate that silencing a quinoa 3, 4-dihydroxyphenylalanine 4, 5-dioxygenase gene (CqDODA1) or a cytochrome P450 enzyme gene (CqCYP76AD1) inhibits betalain production and that knockdown of a reduced-height gene homolog (CqRHT1) causes an overgrowth phenotype in quinoa. Moreover, we show that ALSV can be transmitted to the progeny of quinoa plants. Thus, our findings enable functional genomics in quinoa, ushering in a new era of quinoa research

    Electronic structure of Kondo lattice compounds YbNi3X9 (X = Al, Ga) studied by hard x-ray spectroscopy

    Get PDF
    We have performed hard x-ray photoemission spectroscopy (HAXPES) for Yb-based Kondo lattice compounds; an antiferromagnetic heavy-fermion system YbNi3Al9 and a valence fluctuation system YbNi3Ga9. The Yb 3d5/2 spectra of YbNi3Ga9 showed both Yb2+ and Yb3+-derived structures indicating strong valence fluctuation, and the intensity of Yb2+ (Yb3+) structures gradually increased (decreased) on cooling. The Yb 3d5/2 spectra of YbNi3Al9 mostly consisted of Yb3+-derived structures and showed little temperature dependence. The Yb valences of YbNi3Ga9 and YbNi3Al9 at 22 K were evaluated to be 2.43 and 2.97, respectively. Based on the results of the Ni 2p and valence-band HAXPES spectra together with soft x-ray valence-band spectra, we described that the difference of physical properties of YbNi3X9 (X= Al, Ga) is derived from the differences of the 4f-hole level relative to the Fermi level (EF) and Ni 3d density of states at EF. The HAXPES results on the Yb valences were consistent with those obtained by x-ray absorption spectroscopy using the partial fluorescence yield mode and resonant x-ray emission spectroscopy at the Yb L3 edge

    Synthesis of submicron metastable phase of silicon using femtosecond laser-driven shock wave

    Full text link
    We measured the grain size of metastable phase of Si synthesized by shock compression. We analyzed the crystalline structures of the femtosecond laser-driven shock compressed silicon with x-ray diffraction measurements. We found that submicron grains of metastable Si-VIII exist in the silicon. We suggest that the pressure loading time is too short for the nucleated high-pressure phases to grow in case of the femtosecond laser-driven shock compression, therefore Si-VIII grains of submicron size are obtained. We are expecting to discover other unique crystalline structures induced by the femtosecond laser-driven shock wave. © 2011 American Institute of Physics.Tsujino M., Sano T., Sakata O., et al, Journal of Applied Physics, 110, 12, 126103 (2011) https://doi.org/10.1063/1.3673591
    corecore